TD n°5 réactions d'oxydoréduction

On prendra RT. $\ln(10)/F = 0.059 \text{ V}$

Exercice 1 : nombres d'oxydation et demi équations

- 1) Donner les nombres d'oxydation des différents éléments des espèces suivantes : ClO₄-(Cl est l'atome central) ; Cl₂O (O est l'atome central) ; SO₂Cl₂ (S est l'atome central) ; FeO₄²- (Fe est l'atome central) ; CHCl₃ (C est l'atome central).
- 2) Ajuster les nombres stœchiométriques des équations de réaction suivantes :
 - $IO_4^- + H_2O_2 = I_3^- + O_2$ (en milieu acide)
 - MnO_4 + MnO_2 = MnO_4 ² (en milieu basique)

Données: $\chi(O) > \chi(Cl)$; $\chi(C) > \chi(H)$

Exercice 2 relation de Nernst

- 1) Ecrire les relations de Nernst pour les couples suivants :
 - $O_{2(g)}/H_2O_2$
 - CO_{2(g)}/CH₃OH
 - $[PtCl_4]^{2-}/Pt_{(s)}$
- 2) Ecrire les ½ équations correspondantes en milieu basique pour les 2 premiers couples.

Exercice 3 : constantes d'équilibre

Calculer la constante des équilibres suivants :

1)
$$Cu_{(aq)}^{2+} + 2Ag_{(s)} = Cu_{(s)} + 2Ag_{(aq)}^{+}$$

2)
$$2H_{(aq)}^+ + Sn_{(s)} = H_{2(g)} + Sn_{(aq)}^{2+}$$

3)
$$4MnO_{4(aq)}^{-} + 12H_{(aq)}^{+} = 4Mn_{(aq)}^{2+} + 5O_{2(g)} + 6H_2O$$

Couple	E°(V) à 25 °C
MnO ₄ -/Mn ²⁺	1,51
O _{2(g)} /H ₂ O	1,23
Ag ⁺ /Ag _(s)	0,80
Cu ²⁺ /Cu _(s)	0,34
H ⁺ /H _{2(g)}	0
Sn ²⁺ /Zn _(s)	-0,14

Exercice 4 état d'une pile « usée »

Soit la pile suivante :

 $Zn_{(s)} \mid Zn^{2+} \ (C_{Zn2+} = 15 \ mmol/L \ ; \ 200 \ mL) \ \parallel \ Ag^+ \ (C_{Ag^+} = 10 \ mmol/L \ ; \ 100 \ mL) \ \mid \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \ ; \ \ Ag_{(s)} = 10 \ mmol/L \$

- 1) Dessiner la pile en question et dire si la représentation conventionnelle précédente de cette pile est compatible avec le sens d'évolution spontané de cette pile à son début de vie.
- 2) Calculer la fem de la pile. Comment la mesurer ?
- 3) Que signifie, chimiquement parlant, que la pile est morte ? Quelles sont les concentrations résiduelles lorsque la pile ne débite plus (on fera un calcul d'équilibre) ? (les solides sont en excès)
- 4) Quels sont les potentiels d'électrodes à l'équilibre ?
- 5) Quelle quantité d'électricité maximale la pile peut-elle débiter ?
- 6) En considérant une intensité débitée de 85 mA, quelle est la durée de vie de cette pile ?

<u>Données</u>: $E^{\circ}(Ag^{+}/Ag) = 0.80 \text{ V}$ $E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$; $1 \text{ F} = 96.5.10^{3} \text{ C.mol}^{-1}$

Exercice 5 médiamutation du manganèse

1) Calculer les potentiels des frontières de stabilité pour les espèces du manganèse citées dans les données à pH = 0. S'agitil de frontières de prédominance ou d'existence ? Justifier. Tracer le diagramme.

On pourra choisir comme concentration de travail 0,10 mol.L⁻¹.

- 2) Déterminer la valeur du potentiel standard E°3(MnO4⁻/Mn²⁺).
- 3) On mélange $V_1 = 10,0$ mL de solution de sulfate de manganèse et $V_2 = 10,0$ mL de solution de permanganate de potassium, toutes deux à $C_1 = C_2 = 0,100$ mol/L, déterminer la composition finale de la solution ainsi que la masse de solide formé à pH = 0.

 $\underline{Donn\acute{e}s} : E^{\circ}_{1}(MnO_{4}^{-}/MnO_{2}) = 1,70 \text{ V} \qquad \qquad E^{\circ}_{2}(MnO_{2}/MnO_{2})$

 $E^{\circ}_{2}(MnO_{2}/Mn^{2+}) = 1,23 \text{ V}$ M(Mn) = 54,9 g/mol