Partie 2 : évolutions et transformations de la matière

Chapitre 1

Qu'est-ce que l'évolution d'un système ?

I Variation d'une grandeur physique

1) Exemple

On considère un système composé initialement, à une date t_1 , d'un glaçon de masse $m_1 = 5.6$ g sorti du réfrigérateur à -18°C qu'on laisse reposer à l'air libre dans son bac à glaçon. A une date ultérieure t_2 , le système dans le récipient est composé d'eau liquide et de glaçon a commencé à fondre après s'être refroidi jusqu'à 0°C) avec une masse $m_2 = 3.7$ g sous forme encore glaçon et une masse $m_3 = \dots$ d'eau liquide , la température uniforme du système étant maintenant de

Parmi les grandeurs suivantes, indiquer celles qui ont varié, et comment, et celle qui n'ont pas varié :

	Variation O/N	Quelle variation ?	Valeur initiale	Valeur finale	Variation (numérique)
La température T					
du système					
Le volume V du					
système total					
La masse m _{tot, eau}					
La masse m _{eau solide}					
La masse m _{eau liquide}					

2) Généralisation

La grandeur G qui dépend du temps t est une fonction du temps t. Elle est donc notée en physique	
G(t ₂) correspond ainsi à	

Entre deux dates t_1 et t_2 , avec $t_2 > t_1$, que peut-il se passer pour la grandeur G?

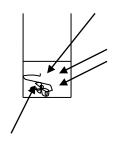
Langage physique	Langage mathématique	Graphiques possibles correspondants	inégalité	Variation et signe de la variation
G augmente entre t ₁ et t ₂				
G		1		

On définit alors la variation de la grandeur G entre les dates t_1 et les dates t_2 par	
Si G augmente entre deux dates (c'est-à-dire est une fonction entre ces deux dates), sa variation est	
Si G diminue entre deux dates (c'est-à-dire est une fonction entre ces deux dates), sa variation est	

Exemples : un avion décolle à la date t_0 , la pression extérieure est de P_0 = 1000 hPa. A la date t_1 = 5 mn, il se trouve à une altitude h_1 = 8500 m où la pression est de P_1 = 750 hPa. Déterminer les variations correspondantes et interprétez les en français.

II Evolution d'un système

1) Définition d'un système


Un système, à une date, est délimité par une enceinte réelle ou virtuelle. Il est alors défini par l'ensemble des espèces physicochimiques qui sont présentes dans cette enceinte.

2) Etat d'un système

On définit l'état d'un système donné en précisant :

- des grandeurs chimiques macroscopiques du système :
- des grandeurs physiques macroscopiques du système :

On symbolise le système chimique et son état par un cadre rempli des informations précédentes :

EI
$n_{\text{H2O(l)}} = 3.0 \text{ mol}$
$n_{H+(aq)} = 1.0 \text{ mol}$
$n_{\text{Cl-(aq)}} = 1.0 \text{ mol}$
$n_{Cu(s)} = 2.0 \text{ mol}$
$T = 20^{\circ}C$
V = 1.0 L
$P = 1.10^5 \text{ Pa}$

3) Evolution

On schématise une évolution de la façon suivante :

EI
$n_{\text{H2O(l)}} = 3.0 \text{ mol}$
$n_{H+(aq)} = 1.0 \text{ mol}$
$n_{\text{Cl-(aq)}} = 1,0 \text{ mol}$
$n_{Cu(s)} = 2.0 \text{ mol}$
$T = 20^{\circ}C$
V = 1.0 L
$P = 1.10^5 \text{ Pa}$

EF
$n_{\text{H2O(l)}} = 3.0 \text{ mol}$
$n_{H+(aq)} = 0 \text{ mol}$
$n_{\text{Cl-(aq)}} = 1,0 \text{ mol}$
$n_{Cu(s)} = 1,5 \text{ mol}$
$n_{Cu2+(s)} = 0,5 \text{ mol}$
$n_{H2(g)} = 0.5 \text{ mol}$
$T = 20^{\circ}C$
V = 1.0 L
$P = 2.10^5 Pa$

4) Transformation

a) Définition

Une transformation d'un système est une évolution particulière : il y a transformation quand au moins une quantité de matière d'une espèce physicochimique varie.

L'évolution précédente est-elle une transformation ? Indiquer une évolution qui ne soit pas une transformation :

b) Différentes transformations

Attention à la subtilité!!

Exemple de transformation physique :
Il s'agit en réalité de tous les
Une transformation est dite chimique lorsqu'il y a au moins variation de
d'une espèce mais sans toucher aux noyaux des espèces : seuls les électrons sont réorganisés
(doublets liants, doublets non liants notamment).

Les transformations pour lesquels les noyaux sont touchés sont les réactions

c) Au programme des 1èresS

Chapitre 2 : approche de l'évolution thermique (changement de température) et des transformations physiques des corps purs (et non des mélanges)

Chapitre 3; introduction aux transformations chimiques

Chapitre 4 : introduction aux transformations nucléaires